
Adversarial Separation Network
for Cross-Network Node Classification

Xiaowen Zhang∗
Yuntao Du∗

zhangxw@smail.nju.edu.cn
duyuntao@smail.nju.edu.cn

State Key Laboratory for Novel
Software Technology at Nanjing

University
Nanjing, Jiangsu, China

Rongbiao Xie
State Key Laboratory for Novel
Software Technology at Nanjing

University
Nanjing, Jiangsu, China

rongbiaoxie@smail.nju.edu.cn

Chongjun Wang†
State Key Laboratory for Novel
Software Technology at Nanjing

University
Nanjing, Jiangsu, China
chjwang@nju.edu.cn

ABSTRACT
Node classification is an important yet challenging task in various
network applications, and many effective methods have been de-
veloped for a single network. While for cross-network scenarios,
neither single network embedding nor traditional domain adap-
tation can directly solve the task. Existing approaches have been
proposed to combine network embedding and domain adaptation
for cross-network node classification. However, they only focus on
domain-invariant features, ignoring the individual features of each
network, and they only utilize 1-hop neighborhood information
(local consistency), ignoring the global consistency information.
To tackle the above problems, in this paper, we propose a novel
model, Adversarial Separation Network (ASN), to learn effective
node representations between source and target networks. We
explicitly separate domain-private and domain-shared informa-
tion. Two domain-private encoders are employed to extract the
domain-specific features in each network and a shared encoder is
employed to extract the domain-invariant shared features across
networks. Moreover, in each encoder, we combine local and global
consistency to capture network topology information more com-
prehensively. ASN integrates deep network embedding with ad-
versarial domain adaptation to reduce the distribution discrepancy
across domains. Extensive experiments on real-world datasets show
that our proposed model achieves state-of-the-art performance in
cross-network node classification tasks compared with existing
algorithms.

CCS CONCEPTS
• Information systems→ Social networks; •Computingmethod-
ologies → Machine learning.

∗Both authors contributed equally to this research.
†Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM’ 21, November 1–5,2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482228

KEYWORDS
cross-network node classification, transfer learning, domain adap-
tation, graph embedding

ACM Reference Format:
Xiaowen Zhang, Yuntao Du, Rongbiao Xie, and Chongjun Wang. 2021.
Adversarial Separation Network for Cross-Network Node Classification. In
Proceedings of the 30th ACM International Conference on Information and
Knowledge Management (CIKM ’21), November 1–5, 2021, Virtual Event, QLD,
Australia.

1 INTRODUCTION
The node classification task is to predict the node labels by network topology
structure or information derived from the nodes in the network [44]. So far,
many effective and feasible methods have been proposed [16, 46]. However,
they are mostly for a single network and do not consider the cross-network
scenarios. When given a new graph with no labels, even it is similar to an
existing graph, the data distribution shift across themwould pose an obstacle
for applying a node classification model learned from an existing (source)
network to a new (target) network [43]. An example of cross-network node
classification is illustrated in Figure 1. Cross-network node classification
can benefit various actual applications. e.g. , in social network, there exist a
source network where all users are associated with some labels indicating
their interests, and a target network where no users have observable labels.
By transferring knowledge from the labeled source network to the unlabeled
target network, we could discover the interest of the target user.

Domain adaptation has attracted much attention in recent years, which
aims to leverage the labeled information from a source domain to improve
the performance of the unlabeled target domain [27]. Many approaches are
proposed for domain adaptation, making it widely used in computer vision
(CV) [24, 31] and natural language processing (NLP) [4, 40]. Despite the
significant achievements, the application of domain adaptation to network
structure data (graph) is still difficult and challenging. Since each node in the
graph has a complicated relationship (i.e., edges) with others, which violates
the assumption of traditional domain adaptation that the data sample is
independent and identically distributed (IID) in each domain. Therefore,
existing domain adaptation algorithms perform poorly in cross-network
node classification tasks since they cannot directly model the network
structure information (The specific analysis is shown in section 5.4).

Currently, there are some attempts to apply domain adaptation for cross-
network node classification based on network structure data [8]. They
aim to learn low-dimensional node representations and reduce domain
discrepancy by combining deep network embedding and domain adaptation.
CDNE [35] proposes to learn label-discriminative and network-invariant
representations based onMaximumMeanDiscrepancy (MMD). ACDNE [34]
integrates adversarial domain adaptation [10] with network embedding to
learn node representation. Besides, AdaGCN [6] and UDAGCN [43] are

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2618

https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3459637.3482228
L.L
Highlight

L.L
Highlight

L.L
Highlight

L.L
Highlight

L.L
12 号机 GMCF环境可以跑

L.L
Highlight

L.L
Highlight

L.L
Highlight

L.L
Highlight

L.L
Highlight

Source network Target network

Class 2
Class 3
Class 1

Unlabeled

Domain
Adaptation

Figure 1: An example of cross-network node classification
proposed to leverage graph convolutional networks (GCN) [19] and domain
adaptation to reduce the domain discrepancy. However, these methods
either learn to map feature representations from one domain to another, or
learn to extract domain-invariant features, but ignore the individual features
of each network, which can degrade the performance of transfer learning
tasks across networks.

Besides, addressing the cross-network node classification task still faces
some challenges:

(1) Existing cross-network node classification approaches mainly use tra-
ditional GCN to learn node representation. Unfortunately, it only considers
the 1-hop neighbor nodes (local consistency) [18], while global consistency
information is not well utilized. In fact, global consistency is also critical as
the node may be influenced by its neighborhoods with different distances
[41]. Therefore, how to explore local and global information in a network
and how to integrate them is worth thinking about.

(2) Previous cross-network domain adaptation methods all attempt to
learn shared features that can be migrated across networks (such as author
organization and publisher in paper citation networks). But they neglect
the influences of each domain’s private features that cannot be transferred
to another (such as the paper ID in paper citation networks). How to explic-
itly capture features that are unique to each network and shared between
networks is very important.

To address the first challenge, we adopt a dual GCN framework, including
a local GCN to extract local 1-hop neighbor features, and a global GCN
to capture global topological information of the network. To address the
second, we adopt the idea of Domain Separation Networks [2] and assume
that explicitly separating domain-private features can improve the model’s
ability to extract the domain-invariant features. The idea of private and
public features has been proposed in image recognition tasks before [32].
But as far as we know, in cross-network adaptation, we are the first to
explicitly separate shared features from the private features based on graph
data across networks. Specifically, we separate domain-private and domain-
shared features by designing a private encoder for each network and a shared
encoder across networks, and force the two encoders to extract different
features. Besides, to ensure the extracted features can retain topological
information of the original network, we introduce a decoder in each domain
to reconstruct the network structure from the concatenation of domain-
private and domain-shared features.

In this paper, we propose a novel model named Adversarial Separation
Network (ASN) for cross-network node classification tasks. It aims to learn
effective node representations between source and target networks by inte-
grating deep network embedding with adversarial domain adaptation. Our
principal contributions can be summarized as follows:

(1) We adopt a dual GCNmodel to integrate local and global consistency
with an attention layer to learn comprehensive node representations
across networks effectively.

(2) We design an innovative way to explicitly separate domain-private
and domain-shared information, by introducing a shared encoder to
extract domain-shared features and two private encoders to extract
each domain’s unique features.

(3) Extensive experimental results in the real-world datasets verify the
effectiveness of the proposed ASN model for cross-network node
classification.

2 RELATEDWORK
Our work is closely related to domain adaptation and cross-network node
classification and next we briefly review them.

2.1 Single Network Node Classification
Network representation learning (network embedding) aims to learn the
low-dimensional potential representation of nodes in the network, and can
be used for various graph-based tasks, such as classification [1, 15, 22], link
prediction [5, 23],clustering[7] and visualization [21].

Some methods based on deep learning have been proposed to learn more
informative node representation. DeepWalk [30] is the first network embed-
ding method proposed to use deep learning techniques, which employs ran-
dom walk sampling to generate the neighborhood of each node. DNGR [3]
is based on deep neural network which uses a random surfing strategy
to capture network structure information and converts the structural in-
formation into PPMI matrix. The above methods only use the network
structure information to learn the low-dimensional network representation,
but ignore the attributes of nodes. Recently, several attributed network
embedding methods [16, 46] have proposed to jointly utilize network struc-
tures, node attributes, and available node labels to learn comprehensive
network representations.

Although the attributed network embedding methods can capture the
relationships between nodes across networks based on node attributes, none
of them considered the domain discrepancy across different networks.

2.2 Domain Adaptation
Domain adaptation, a representative method in transfer learning, aims to
leverage the information of labeled source domain to improve the perfor-
mance of unlabeled target domain. In recent years, many approaches based
on deep learning are proposed for domain adaptation [9, 42], which can be
roughly categorized into two groups: distribution alignment [24, 42] and
adversarial domain adaptation [9, 38].

The distribution alignment methods aim to reduce the statistic discrep-
ancy across domains by learning features with less distribution discrepancy.
DAN [24] minimizes the feature discrepancy between the last three layers of
AlexNet [20] and the multiple-kernel MMD is used to measure the discrep-
ancy. JAN [26] minimizes the joint MMD distance to reduce the conditional
distribution discrepancy across domains. Other measures are also adopted
such as Kullback-Leibler (KL) divergence, correlation alignment (CORAL)
[36] and central moment discrepancy (CMD) [45]. These methods can utilize
the deep neural network to extract more transferable features and also have
achieved remarkable performance.

In this paper, we focus on adversarial domain adaptation methods, which
are motivated by the idea of GAN [11]. The Domain adversarial neural net-
work (DANN) [10] aims to learn domain-invariant features and designs a
gradient reversal layer (GRL) to back-propagate the gradients. WDGRL [33]
utilizes a neural network to estimate empirical Wasserstein distance across
domains. CDAN [25] leverages the discriminative information from the
classifier to assist the adversarial adaptation. MADA [29] captures a mul-
timodal structure to support the fine-grained alignment of different data
distributions from different domains. However, the above domain adap-
tation algorithms cannot be directly applied to the cross-network node
classification task since they cannot effectively capture the complex net-
work structure information.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2619

L.L
Highlight

L.L
Underline
v. 迁移，移往(migrate的过去式和过去分词)

L.L
Highlight

L.L
Highlight

L.L
Highlight

L.L
Underline
adj. 最重要的；主要的；资本的；本金的
n. 校长；主要演员，主角；[法]委托人，当事人；本金

L.L
Highlight

L.L
Highlight

L.L
Highlight

2.3 Cross-network Node Classification
Recently, to solve the problem of cross-network node classification, some
studies have been working to effectively solve the problem of cross-network
node classification by effectively combining domain adaptation and deep net-
work embedding to learn the low-dimensional node representation across
networks.

CDNE [35] is proposed to learn label-discriminative and network-invariant
representations by incorporating MMD-based domain adaptation into net-
work embedding. ACDNE [34] integrates adversarial domain adaptation
based on DANNwith deep network embedding to learn node representation.
AdaGCN [6] leverages GCN and adversarial domain adaptation to address
cross-network node classification. The above methods only consider the
local 1-hop neighbor nodes for network embedding, but neglect the net-
work’s global consistency information. UDAGCN [43] attempts to solve the
issue by adopting dual GCNs to jointly exploit local and global consistency
for feature aggregation, while it ignores the individual and specific features
of each single network.

3 PROBLEM DEFINITION
In this paper, we focus on node classification tasks on network graphs. Let
G = (𝑉 , 𝐸,𝐴,𝑋,𝑌) donate a graph with a set of nodes 𝑉 = {𝑣𝑖 }𝑖=1,...,𝑁
and a set of edges 𝐸 = {𝑒𝑖,𝑗 = (𝑣𝑖 , 𝑣𝑗) } which indicate the relationship
between two nodes. Let𝐴 ∈ R𝑁×𝑁 donate the adjacencymatrix of G, which
represents the topological structure of a graph where 𝑁 is the number of
nodes, and𝐴𝑖,𝑗 = 1 if 𝑒𝑖,𝑗 = (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸; otherwise𝐴𝑖,𝑗 = 0. Let𝑋 ∈ R𝑁×𝑂

and 𝑌 ∈ R𝑁×𝐾 donate the node attribute matrix and node label matrix
associated with G, where𝑂 is the number of node attributes and 𝐾 is the
number of node labels in G.

Source Network Let G𝑆 = (𝑉 𝑆 , 𝐸𝑆 , 𝐴𝑆 , 𝑋𝑆 , 𝑌𝑆) be a labeled source
network with a set of labeled nodes 𝑉 𝑆 and a set of edges 𝐸𝑆 . 𝑌𝑆 is the
label matrix for the source graph.

Target Network Let G𝑇 = (𝑉𝑇 , 𝐸𝑇 , 𝐴𝑇 , 𝑋𝑇) be a completely unlabeled
target domain network with a set of unlabeled nodes𝑉𝑇 and a set of edges
𝐸𝑇 .

Cross-NetworkNodeClassificationGiven a fully labeled source graph
G𝑆 and an unlabeled target graph G𝑇 , the cross-network node classification
is to learn appropriate node representations and build a node classifier to
accurately classify the nodes in the target network with the assistance of
the abundant labeled information from the source network. However, since
there are no labels in G𝑇 , it is a challenging task.

4 METHODOLOGY
This section presents our model Adversarial Separation Network (ASN) for
cross-network node classification.

4.1 Overview of Model Framework
Figure 2 shows the model framework of our proposed Adversarial Separation
Network (ASN). As shown in Figure 2(a), the proposed model consists of
three encoders (i.e., a source encoder 𝐸𝑆 , a target encoder 𝐸𝑇 and a shared
encoder 𝐸𝐻), two decoders (i.e., a source decoder 𝑅𝑆 and a target decoder
𝑅𝑇), a domain discriminator 𝐷 and a node classifier𝐶 .

Specifically, the source encoder 𝐸𝑆 and target encoder 𝐸𝑇 are applied
to capture each network’s specific features that cannot be shared across
networks. While the shared encoder 𝐸𝐻 is trained adversarially to extract
the shared features in both networks. The decoders (𝑅𝑆 and 𝑅𝑇) aim to
reconstruct the original graph according to the features extracted by the cor-
responding encoders. More importantly, to reduce distribution discrepancy
across networks, the domain discriminator 𝐷 is employed for adversarial
domain adaptation. The node classifier𝐶 is trained to assist the unlabeled
target network in carrying out node classification tasks.

Besides, as shown in Figure 2(b) and (c), each encoder contains a local
GCN (𝐺𝑙) and a global GCN (𝐺𝑔).𝐺𝑙 aims to extract the local features by
the graph adjacency matrix and𝐺𝑔 aims to capture the global consistency
relationship by the Positive Point-wise Mutual Information (PPMI) matrix
[47].

4.2 Private and Shared Node Representation
As mentioned before, all existing domain adaptation approaches only fo-
cus on creating a map [35] or learning shared representations across do-
mains [43], they ignore the individual features of each domain. To settle
this issue, we apply the idea of Domain Separation Networks [2] for node
classification, and we assume that explicitly separating features that are
unique (private) to each domain can improve the model’s ability to extract
the shared features across domains.

4.2.1 Difference Loss. The difference loss is applied to encourage the
shared and private encoders to encode different aspects of both domain’s
features. We define the difference loss via a soft subspace orthogonality
constraint between the private and shared node representations of each
domain. Let 𝑍𝑆

𝑠ℎ
=𝐸𝐻 (𝑋𝑆 , 𝐴𝑆 , 𝑃𝑆) and 𝑍𝑇

𝑠ℎ
=𝐸𝐻 (𝑋𝑇 , 𝐴𝑇 , 𝑃𝑇) be the ma-

trices that are hidden shared representations of source and target graph
network respectively. 𝑃𝑆 and 𝑃𝑇 are the PPMI matrices of source network
and target network, respectively. Similarly, let 𝑍𝑆𝑝𝑟 =𝐸𝑆 (𝑋𝑆 , 𝐴𝑆 , 𝑃𝑆) and
𝑍𝑇𝑝𝑟 =𝐸𝑇 (𝑋𝑇 , 𝐴𝑇 , 𝑃𝑇) be the matrices that are hidden private representa-
tions respectively. The difference loss ensures orthogonality and separation
between the private and shared node representations of each network:

𝑚𝑖𝑛
𝐸𝑆 ,𝐸𝑇 ,𝐸𝐻

L𝑑𝑖𝑓 𝑓 = 𝑚𝑖𝑛
𝐸𝑆 ,𝐸𝐻

L𝑆
𝑑𝑖𝑓 𝑓

+ 𝑚𝑖𝑛
𝐸𝑇 ,𝐸𝐻

L𝑇
𝑑𝑖𝑓 𝑓

=∥𝑍𝑆
𝑠ℎ

⊤
𝑍𝑆𝑝𝑟 ∥2𝐹 + ∥𝑍𝑇

𝑠ℎ

⊤
𝑍𝑇𝑝𝑟 ∥2𝐹 (1)

where ∥ · ∥2
𝐹
is the squared Frobenius norm.

4.2.2 Reconstruction Loss. To force extracted features to maintain the
structure information of the original network, we introduce the reconstruc-
tion loss and propagate it back to the source and target encoders. The
decoder should make the reconstructed adjacency matrix (𝐴𝑆 or 𝐴𝑇) as
similar as possible to the original adjacency matrix (𝐴𝑆 or 𝐴𝑇), since the
adjacency matrix determines the structure of the graph. Thus each domain’s
private encoder and decoder are trained to minimize the cross entropy loss:

𝑚𝑖𝑛
𝐸𝑆 ,𝐸𝑇 ,𝑅𝑆 ,𝑅𝑇

L𝑟𝑒𝑐𝑜𝑛 = 𝑚𝑖𝑛
𝐸𝑆 ,𝑅𝑆

L𝑆𝑟𝑒𝑐𝑜𝑛 + 𝑚𝑖𝑛
𝐸𝑇 ,𝑅𝑇

L𝑇𝑟𝑒𝑐𝑜𝑛

= −E𝑎𝑠
𝑖 𝑗
∼𝐴𝑆 [𝑎

𝑠
𝑖 𝑗 𝑙𝑜𝑔

ˆ𝑎𝑠
𝑖 𝑗
+ (1−𝑎𝑠𝑖 𝑗)𝑙𝑜𝑔 (1− ˆ𝑎𝑠

𝑖 𝑗
)]

−E𝑎𝑡
𝑖 𝑗
∼𝐴𝑇 [𝑎𝑡𝑖 𝑗 𝑙𝑜𝑔 ˆ𝑎𝑡

𝑖 𝑗
+ (1−𝑎𝑡𝑖 𝑗)𝑙𝑜𝑔 (1− ˆ𝑎𝑡

𝑖 𝑗
)] (2)

where 𝑎𝑠
𝑖 𝑗

or 𝑎𝑡
𝑖 𝑗

(0 or 1) represents the original value of an element in the

adjacency matrix𝐴𝑆 or𝐴𝑇 , and ˆ𝑎𝑠
𝑖 𝑗

or ˆ𝑎𝑡
𝑖 𝑗

(between 0 and 1) represents the
value of the corresponding element in the reconstructed adjacency matrix
𝐴𝑆 =𝑅𝑆 ([𝑍𝑆𝑝𝑟 , 𝑍𝑆𝑠ℎ]) or 𝐴𝑇 =𝑅𝑇 ([𝑍𝑇𝑝𝑟 , 𝑍𝑇𝑠ℎ]) , where [·, ·] represents the
operation of concatenating two tensors together.

4.3 Local and Global Node Representation
As shown in Figure 2(b) and (c), in the process of node representation
learning, to capture the local and global information in each network, we
introduce a dual-GCNs framework: local GCN (𝐺𝑙) and global GCN (𝐺𝑔).
We feed both the source network and target network into the node repre-
sentation learning module.

4.3.1 Local GCN. By directly utilizing the proposed GCN model in [19],
we formulate the local GCN𝐺𝑙 as a type of feed-forward neural network.
Given the node attribute matrix𝑋 and graph adjacency matrix𝐴, the output

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2620

L.L
Highlight

L.L
Highlight

L.L
Highlight

Source network

Target network 𝒁𝒔𝒉𝑻

𝒁𝒑𝒓𝑻

𝒁𝒑𝒓𝑺𝑨𝑺、𝑷𝑺

𝑿𝑺

Source Decoder 𝑹𝑺

Target Decoder 𝑹𝑻

Source Encoder 𝑬𝑺

Target Encoder 𝑬𝑻

Shared
Encoder 𝑬'

Concatenate

Concatenate

𝒁𝒔𝒉𝑺

Domain Discriminator 𝑫

Node Classifier 𝑪

Reconstruction loss

Domain loss

Label loss

Entropy loss

Domain Adaptation
Difference loss

Difference loss

Source / Target Encoder Shared Encoder (for S and T)

𝑨𝑺)

(b)

(a)

(c)

G
R
L

Local GCN 𝑮𝒍

𝒁𝒍

𝒁𝒈

𝒁𝒑𝒓𝑋	（features）

𝐴	（adjacency matrix）

𝑃	（PPMI matrix）

𝑋	（features）

A
ttention

Global GCN 𝑮𝒈

𝒁𝒍
𝑺

𝐴% 𝒁𝒍
𝑻

𝒁𝒈𝑺

𝒁𝒈𝑻

A
ttention

𝒁𝒔𝒉
𝑺

𝒁𝒔𝒉
𝑻

Source:𝑋'

Target: 	𝑋(

Local GCN 𝑮𝒍

Global GCN 𝑮𝒈

𝑨𝑺、𝑷𝑺

𝑨𝑻、𝑷𝑻

𝑨𝑻、𝑷𝑻

𝑿𝑻

𝑨𝑻)

𝐴&
𝑃%

𝑃&

Reconstruction loss

Figure 2: The framework of Adversarial Separation Network (ASN) for cross-network node classification

of the 𝑖-𝑡ℎ hidden layer 𝑍 (𝑖)
𝑙

of the network𝐺𝑙 is defined as:

𝑍
(𝑖)
𝑙

(𝑋) = 𝜎 (�̃�− 1
2 �̃��̃�− 1

2𝑍
(𝑖−1)
𝑙

�̃� (𝑖)) (3)

where𝜎 (·) denotes the activation function, �̃� = 𝐴+𝐼𝑛 is the adjacent matrix
with self-loops (𝐼𝑛 ∈ R𝑁×𝑁 is an identity matrix) and �̃�𝑖𝑖 =

∑
𝑗 �̃�𝑖 𝑗 . And

�̃�− 1
2 �̃��̃�

1
2 is the symmetric normalized adjacency matrix. 𝑍 (𝑖−1)

𝑙
represents

the output of the (𝑖-1)-𝑡ℎ layer and 𝑍 0
𝑙
= 𝑋 . �̃� (𝑖) represent the trainable

weight parameters of the 𝑖-𝑡ℎ layer.

4.3.2 Global GCN. To capture the global consistency relationship, we
introduce a global GCN and follow [47] to employ the PPMI matrix to
measure the structural proximity between nodes within𝑘 steps in a network.

In a network G, we first obtain the transition probability matrix T
through random walk (T𝑖 𝑗 represents the transition probability of visiting
node 𝑣𝑗 from 𝑣𝑖 after 𝑘 steps). We then aggregate an overall transition
probability matrix by weighting closer neighborhoods more. Next, the PPMI
matrix 𝑃 ∈ R𝑁×𝑁 associated with network G is calculated to measure the
topological proximity between a pair of nodes 𝑣𝑖 and 𝑣𝑗 . A higher positive
value of 𝑃𝑖 𝑗 indicates that node 𝑣𝑖 has a strong network connection with 𝑣𝑗
within 𝑘 steps in network G; otherwise, 𝑃𝑖 𝑗 = 0. For the detailed calculation
of 𝑃 , please refer to [47].

After calculating 𝑃 to measure the topological proximity between nodes
in a network, we donate the 𝑃 -based convolutional network as𝐺𝑔 and the
output of the 𝑖-𝑡ℎ hidden layer 𝑍 (𝑖)

𝑔 of network𝐺𝑔 is defined as follows:

𝑍
(𝑖)
𝑔 (𝑋) = 𝜎 (𝐷− 1

2 𝑃𝐷− 1
2𝑍

(𝑖−1)
𝑔 𝑊 (𝑖)) (4)

where 𝑃 is the PPMI matrix, 𝐷𝑖𝑖 =
∑
𝑗 𝑃𝑖 𝑗 is the normalized matrix, 𝑍 (𝑖−1)

𝑔

is the output of the (𝑖-1)-𝑡ℎ layer and𝑍 0
𝑔 = 𝑋 .𝑊 (𝑖) are the trainable weight

parameters of the 𝑖-𝑡ℎ layer.

4.3.3 Attention. As embeddings from local and global GCN contribute
differently, we add an attention layer to capture the significance of each
embedding to produce a unified node representation.

For each network, after performing the local and global node embedding
module, we obtain 𝑍𝑙 and 𝑍𝑔 , which represent the output features of 𝐺𝑙
and𝐺𝑔 . To compute the weight coefficients 𝜔1 ∈ R and 𝜔2 ∈ R for 𝑍𝑙 and

𝑍𝑔 respectively, we assign a linear transformation layer 𝑓 𝑐 as the attention
function:

𝜔𝑖 = 𝑓 𝑐 ([𝑍𝑙 , 𝑍𝑔]), 𝑖 = 1, 2 (5)

Then we normalize the weights 𝜔𝑖 with a softmax layer:

𝜔𝑖 =
𝑒𝑥𝑝 (𝜔𝑖)∑2
𝑖=1 𝑒𝑥𝑝 (𝜔𝑖)

(6)

After summing the weights and the corresponding features, we can get the
final output 𝑍 of the encoder:

𝑍 = 𝜔1𝑍𝑙 +𝜔2𝑍𝑔 (7)

Note that each encoder contains a local GCN and a global GCN. For
example, for shared encoder 𝐸𝐻 , after performing the local and global node
embedding module on the source domain graph, 𝑍𝑆

𝑙
and 𝑍𝑆𝑔 are obtained.

After conducting Equation (5)-(7), we can obtain the final output 𝑍𝑆
𝑠ℎ
.

4.4 Cross-Network Node Classification
To better learn knowledge across domains to assist in node classification
tasks, we adopt a node classifier 𝐶 (·) to learn label-discriminative node
representations, by incorporating the node classification loss for the labeled
source network and the entropy loss for the unlabeled target network.

4.4.1 Node Classification Loss. The classification loss trains the model
to predict the node labels we are ultimately interested in. Since the target
domain is unlabeled, the classification loss is applied only to the source
network and we need to minimize the classification loss:

𝑚𝑖𝑛
𝐸𝐻 ,𝐶

L𝑐𝑙𝑠 =
1
𝑁𝑠

𝑁𝑠∑︁
𝑖=1

𝐿 (𝑓 (𝑥𝑠𝑖), 𝑦𝑠𝑖)) (8)

where 𝐿 (·) is the cross-entropy loss and 𝑁𝑠 is the number of nodes in
the source network. 𝑦𝑠

𝑖
denotes the ground-truth label of node 𝑣𝑠

𝑖
and

𝑓 (𝑥𝑠
𝑖
) = 𝐶 (𝐸𝐻 (𝑥𝑠

𝑖
, 𝐴𝑆 , 𝑃𝑆)) is the the predicted probability of node 𝑣𝑠

𝑖
.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2621

L.L
Underline
n. 接近，邻近；接近度，距离；亲近

4.4.2 Entropy Loss. To directly access unlabeled target data and force
the node classifier 𝐶 (·) to pass through the low-density regions of the
target feature space, we employ an entropy loss for the target network.
Following [12], we achieve it via minimizing the conditional entropy with
respect to the predicted probability on the target network:

𝑚𝑖𝑛
𝐸𝐻 ,𝐶

L𝑒𝑛𝑡 =
1
𝑁𝑡

𝑁𝑡∑︁
𝑖=1

𝐻 (𝑓 (𝑥𝑡𝑖)) (9)

where 𝐻 (𝑓 (𝑥𝑡
𝑖
)) = −∑𝐾

𝑘=1 𝑓𝑘 (𝑥
𝑡
𝑖
) log 𝑓𝑘 (𝑥𝑡𝑖) and 𝐻 (·) is the entropy

function, and 𝑁𝑡 is the number of nodes in the target network. 𝑓 (𝑥𝑡
𝑖
) =

𝐶 (𝐸𝐻 (𝑥𝑡
𝑖
, 𝐴𝑇 , 𝑃𝑇)) is the predicted probability for 𝑥𝑡

𝑖
and 𝑓𝑘 (𝑥𝑡𝑖) is the

probability of predicting the node 𝑣𝑡
𝑖
to class 𝑘 in the target network.

4.5 Adversarial Domain Adaptation
Tomake the shared node representations learned by our model to be domain-
invariant, we employ an adversarial domain adaptation approach. The
domain discriminator 𝐷 (·) is utilized to distinguish whether the shared
features are from the source network or the target network. Meanwhile, the
shared encoder 𝐸𝐻 tries to produce domain-invariant features that make
the domain discriminator into believing that there is no difference between
𝑍𝑆
𝑠ℎ

and 𝑍𝑇
𝑠ℎ
.

As a result, domain-invariant features can be extracted from the outputs
of shared encoder 𝐸𝐻 , which are expected to reduce the distribution dis-
crepancy across networks. Thus, by utilizing nodes from source and target
networks for training, the objective of domain adversarial loss is defined as:

L𝑎𝑑𝑣 = E𝑥𝑠∼G𝑆 log𝐷 (𝑧𝑠
𝑠ℎ
) + E𝑥𝑡∼G𝑇 log[1 −𝐷 (𝑧𝑡

𝑠ℎ
)] (10)

where 𝐷 (𝑧𝑠
𝑠ℎ
) and 𝐷 (𝑧𝑡

𝑠ℎ
) donate the predicted domain labels of node

from source and target domains, respectively. 𝑧𝑠
𝑠ℎ

= 𝐸𝐻 (𝑥𝑠 , 𝐴𝑆 , 𝑃𝑆) and
𝑧𝑡
𝑠ℎ

=𝐸𝐻 (𝑥𝑡 , 𝐴𝑇 , 𝑃𝑇) are the node embedding outputs of shared encoder
𝐸𝐻 .

The adversarial learning procedure is a min-max game. The domain
discriminator 𝐷 aims to minimize the domain adversarial loss, while the
shared encoder 𝐸𝐻 is trained to maximize the loss. Thus, the objective of
domain adaptation is:

𝑚𝑎𝑥
𝐸𝐻

𝑚𝑖𝑛
𝐷

L𝑎𝑑𝑣 (11)

4.6 Overall Objectives
To better transfer knowledge from the source network to the target network,
our model consists of three goals to enable classifying nodes in the target
network. The first is to encode both domain-private and domain-shared
features by explicitly capturing information that is unique to each network
and shared between networks. The second is to learn label discriminative
features to classify the source graphs well. And the third is to learn domain-
invariant node representations via adversarial domain adaptation approach.

By integrating all the objectives mentioned before, the goal of ASN is to
optimize the overall objectives as follows:

L=L𝑐𝑙𝑠 +_𝑒L𝑒𝑛𝑡 +_𝑑L𝑎𝑑𝑣+_𝑓 L𝑑𝑖𝑓 𝑓 +_𝑟 L𝑟𝑒𝑐𝑜𝑛 (12)

where _𝑑 , _𝑒 , _𝑓 and _𝑟 represent the trade-off parameters to balance the
importances of different loss terms. To achieve adversarial training, we apply
gradient reversal layer (GRL) [10] instead of training the shared encoder and
the discriminator alternately. GRL behaves as the identity function during
the forward propagation and inverts the gradient sign during the backward
propagation, hence driving the parameters to maximize the output.

4.7 Algorithm Description
Our algorithm is illustrated in Algorithm 1. Given a labeled source net-

work G𝑆 = (𝑉 𝑆 , 𝐸𝑆 , 𝐴𝑆 , 𝑋𝑆 , 𝑌𝑆) and an unlabeled target network G𝑇 =

(𝑉𝑇 , 𝐸𝑇 , 𝐴𝑇 , 𝑋𝑇) , our goal is to obtain the optimal model that can classify
the target network correctly.

Algorithm 1 Adversarial Separation Network for Cross-Network
Node Classification
Input: source network: G𝑆 = (𝑉 𝑆 , 𝐸𝑆 , 𝐴𝑆 , 𝑋𝑆 , 𝑌𝑆) and target network:

G𝑇 = (𝑉𝑇 , 𝐸𝑇 , 𝐴𝑇 , 𝑋𝑇)
Parameter: learning rate 𝑙𝑟 , trade-off parameters _𝑑 , _𝑓 , _𝑟 and _𝑒
Output: optimal encoders 𝐸𝑆 , 𝐸𝑇 , 𝐸𝐻 and optimal node classifier𝐶

1: Compute PPMI matrix 𝑃𝑆 for source network.
2: Compute PPMI matrix 𝑃𝑇 for target network.
3: while not convergence do
4: In source network G𝑆 :
5: Learn local node embedding 𝑍𝑆

𝑙
by local GCN𝐺𝑙 using Eq.(3)

6: Learn global node embedding𝑍𝑆𝑔 by global GCN𝐺𝑔 using Eq.(4)

7: Learn private node embedding 𝑍𝑆𝑝𝑟 by source encoder 𝐸𝑆 using
Eq.(5)-(7)

8: Learn shared node embedding 𝑍𝑆
𝑠ℎ

by shared encoder 𝐸𝐻 using
Eq.(5)-(7)

9: Learn reconstructed graph adjacency matrix 𝐴𝑆 by source de-
coder 𝑅𝑆

10: In target network G𝑇 :
11: Learn local node embedding 𝑍𝑇

𝑙
by local GCN𝐺𝑙 using Eq.(3)

12: Learn global node embedding𝑍𝑇𝑔 by global GCN𝐺𝑔 using Eq.(4)

13: Learn private node embedding 𝑍𝑇𝑝𝑟 by target encoder 𝐸𝑇 using
Eq.(5)-(7)

14: Learn shared node embedding 𝑍𝑇
𝑠ℎ

by shared encoder 𝐸𝐻 using
Eq.(5)-(7)

15: Learn reconstructed graph adjacency matrix 𝐴𝑇 by target de-
coder 𝑅𝑇

16: Compute difference loss L𝑑𝑖𝑓 𝑓 using Eq (1).
17: Compute reconstruction loss L𝑟𝑒𝑐𝑜𝑛 using Eq (2).
18: Compute node classification loss L𝑐𝑙𝑠 using Eq (8).
19: Compute target entropy loss L𝑒𝑛𝑡 using Eq (9).
20: Compute domain adversarial loss L𝑎𝑑𝑣 across networks using Eq

(10)-(11).
21: Back-propagate loss gradient using Eq (12).
22: Update weights of all used models.
23: end while

Firstly, we compute the PPMI matrices [47] 𝑃𝑆 and 𝑃𝑇 for the source and
target network (Line 1-2). Then we employ a dual GCN framework (𝐺𝑙 and
𝐺𝑔) to capture the local and global consistency relationship of each network
(Line 5-6 and Line 11-12). Also, we adopt private and shared encoders to learn
private and shared node representations for source and target networks
(Line 7-8 and Line 13-14). Two decoders for source and target network
are employed to reconstruct the graph adjacency matrix (Line 9 and Line
15). Next, the difference loss, reconstruction loss, node classification loss,
entropy loss, and domain classification loss are computed by learned node
representations (Line 16-20). Finally, the trainable parameters of ASN are
updated by Adam optimizer (Line 21-22).

After the model finally converges or a maximum training iteration has
been reached, we can employ the optimized encoders to generate com-
prehensive node representations for both networks. Then we employ the
optimized node classifier to predict node labels for the target network.

5 EXPERIMENTS
In this section, we describe datasets, experimental setting, and perfor-
mance analysis. The source code of ASN is provided in https://github.com/
yuntaodu/ASN.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2622

https://github.com/yuntaodu/ASN
https://github.com/yuntaodu/ASN
L.L
Underline
 经过； 通过；经历；经历并完成

L.L
Underline
表现为

Datasets #Nodes #Edges #Attributes #Union Attributes #Labels

DBLPv7 5484 8130 4412 6775 5
ACMv9 9360 15602 5571 6775 5
Citationv1 8935 15113 5379 6775 5

Table 1: Statistics of the network datasets

5.1 Datasets
In the experiments, we performed feature extraction on the original AMiner
datasets [37](http://www.arnetminer.org/data), and obtained three citation
network dataset. The details of the datasets are displayed in Table 1. For
each dataset, we extracted the papers published in different periods, i.e.,
DBLPv7 (between years 2004 and 2008), ACMv9 (between years 2000 and
2010) and Citationv1 (before the year 2008). It is obvious that they inherently
have varied data distributions.

We consider the citation networks as undirected networks with each
node representing a paper and each edge indicating a citation relation be-
tween two papers. Each paper belongs to one of the following five categories
according to its research topics, including “Databases”, “Artificial Intelli-
gence”, “Computer Vision”, “Information Security”, and “Networking”. Six
cross-network classification tasks are conducted, including C→D, A→D,
D→C, A→C, D→A, and C→A, where D, C, A represent DBLPv7, Citationv1
and ACMv9, respectively.

5.2 Compared Methods
What’s more, we select compared methods from related research lines,
including the following four types:

(1) Single Network Embedding: ANRL [46] designs a neighbor en-
hancement autoencoder and an attribute-aware skip-gram model to learn
the node representations. LANE [16] constructs the similarity matrices
of node attributes, network structure and labels, and projects them into a
unified embedding space.

(2) Traditional Domain Adaptation: MMD [13] is used to reduce
the distribution discrepancy between the source domain and the target
domain based on the maximum mean discrepancy. DANN [10] designs a
GRL between feature extractor and domain discriminator and integrates an
adversarial mechanism into domain adaptation.

(3) GCN-based Node Classification: GCN [19] is a classical model
for node classification, which uses Laplace matrix, eigendecomposition
and Fourier transform to convolve on graph network. GAT [39] uses an
attention mechanism to determine the importance of each neighbor node
to the central node when aggregating the node’s neighbor information.
GraphSAGE [14] aims to learn node representation by sampling and aggre-
gating node features from local neighbors, rather than training a separate
embedding for each node.

(4) Cross-Network Node Classification: Source-Only is trained only
on the source domain with Local GCN and Global GCN.We evaluate the per-
formance of the target domain without domain adaptation. UDAGCN [43]
adopts a dual graph convolutional network to jointly exploits local and
global consistency for feature aggregation. AdaGCN [6] uses adversarial
domain adaptation and GCN to jointly model network structures and node
attributes for learning representations. UDAGCN, AdaGCN, and ASN all
utilize GCN to extract features, while CDNE [35], and ACDNE [34] are
based on their self-designed models to extract node features, which is not
the point we focus on. Therefore, ASN only compares with UDAGCN and
AdaGCN.

5.3 Experimental Settings
We follow the standard evaluation protocols for cross-network node classi-
fication task [43]. All the labeled source nodes and unlabeled target nodes
are used for model training for cross-network node classification methods
and traditional domain adaptation methods. For single network embedding

Task 𝑙𝑟 _𝑑 _𝑟 _𝑓

A →D 3×10−2 5×10−1 10−1 10−4
A →C 2×10−2 5×10−1 10−3 10−4
D →A 2×10−2 5×10−1 10−1 10−4
D →C 3×10−2 5×10−1 10−1 10−4
C→A 3×10−2 5×10−1 1 10−2
C→D 2×10−2 5×10−1 10−1 10−2

Table 2: Optimal hyperparameters for each cross-network
node classification task where A, D and C represent ACMv9,
DBLPv7 and Citationv1, respectively.

and GCN-based node classification methods, the model is trained in the
source network and tested on the target network. The average classification
accuracy is calculated after 10 times repetitions on six domain adaptation
tasks. We ran all the comparison methods on the datasets we used.

In the experiments, we implement our proposed methods using Pytorch
[28] and train the model with Adam optimizer [17]. We train the model for
600 epochs, and to prevent overfitting, we perform a learning rate decaying
by assigning the weight decay value as 5 × 10−4 to stabilize training.

In both source and target networks, for all encoders, we all use GCNs
that contain two hidden layers to learn node representation. The hidden
dimensionality for the GCN layer is set as 𝑑𝐺1 = 128, 𝑑𝐺2 = 16. And the
dropout rate for each layer is set to 0.5. For a fair comparison, the same
dimensionality is also set for other compared methods based on GCN.

For local GCN 𝐺𝑙 , we input the feature matrix 𝑋 and the adjacency
matrix 𝐴 into the first layer GCN with dimension 128, and then input the
obtained output into the second layer GCN with dimension 16 to obtain
the final local node representation. For global GCN, we first get the PPMI
matrix 𝑃 when measuring the global topological proximities between nodes.
Then we input the feature matrix 𝑋 and the PPMI matrix 𝑃 into the first
layer GCN with dimension 128, and then input the obtained output into
the second layer GCN with dimension 16 to obtain the final global node
representation.

For the size of 𝑘 in PPMI matrix, if 𝑘 is too small, only the close neighbors
can be extracted, eventually the PPMI matrix tends to be similar to the adja-
cency matrix. If 𝑘 is too large, the neighbors far away from the current node
will be captured, which causes over-smoothing. Finally, the representation
of all nodes tends to be the same, leading to the over-smoothing problem.
In our paper, we set 𝑘 by searching 𝑘 ∈ {2, 3, 4, 5} and eventually we set
𝑘 = 3 to get the final PPMI matrix.

The node classifier only contains one hidden layer with 16 units. For the
domain discriminator, it is constructed with two hidden layers with dimen-
sionalities as 𝑑𝐷1 = 16, 𝑑𝐷2 = 10 and the dropout rate is set to 0.3. Besides,
for the domain private decoder, we use the inner-product as a decoder to
reconstruct the adjacent matrix of the original graph. The learning rates for
the models in our method will be described in the next subsection. We train
the model on V100 GPU, and it costs 20 minutes to train the model.

5.4 Hyperparameters Setting
There are five hyperparameters in our model, namely the learning rate
𝑙𝑟 , weight balance parameters _𝑑 , _𝑟 , _𝑓 , _𝑒 which represent the trade-off
parameters to balance the importances of domain adversarial loss L𝑎𝑑𝑣 ,
reconstruction loss L𝑟𝑒𝑐𝑜𝑛 , difference loss L𝑑𝑖𝑓 𝑓 and entropy loss L𝑒𝑛𝑡 .

For _𝑒 , we set it to
𝑒𝑝𝑜𝑐ℎ

𝑚𝑎𝑥𝑒𝑝𝑜𝑐ℎ
∗ 0.01, where 𝑒𝑝𝑜𝑐ℎ represents the num-

ber of current iteration and𝑚𝑎𝑥𝑒𝑝𝑜𝑐ℎ represents the maximum training
iteration. For other hyperparameters, we evaluate all tasks through grid
search on the hyperparameter space with a wide range of values for regu-
larization parameters _𝑑 ∈ [0, 1], _𝑟 ∈ [0, 1] and _𝑓 ∈ [0, 1]. The optimal

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2623

http://www.arnetminer.org/data
L.L
Underline
n. 周期；时期(period的名词复数)；（一段）时间；学时；句号

Compared Methods A → D C→ D D → A C → A A → C D→ C Average

DeepWalk 0.4078 0.3130 0.3880 0.3974 0.4260 0.4847 0.4028
LANE 0.5706 0.5857 0.5362 0.5627 0.5802 0.5695 0.5675
ANRL 0.6648 0.6603 0.6308 0.6446 0.6841 0.6664 0.6585
GCN 0.6435 0.7018 0.6172 0.7036 0.7448 0.7049 0.6860
GAT 0.6800 0.6479 0.5948 0.675 0.714 0.7097 0.6702

GraphSAGE 0.7094 0.7154 0.6521 0.6912 0.7303 0.7117 0.7017
MMD 0.6745 0.7012 0.6379 0.6865 0.7048 0.6910 0.6827
DANN 0.6874 0.7128 0.6272 0.6704 0.7222 0.7019 0.6870

Source-only 0.6435 0.7018 0.6172 0.7036 0.7448 0.7049 0.6860
UDAGCN 0.6832 0.7004 0.6761 0.6885 0.7192 0.7351 0.7004
AdaGCN 0.6932 0.7089 0.6792 0.6830 0.6932 0.7777 0.7059
ASN 0.7604 0.7797 0.7032 0.7470 0.8112 0.7827 0.7641

Table 3: Node classification accuracy comparisons on six cross-domain tasks.

hyperparameter settings that achieve the best result for each task are shown
in Table 2. We can observe that extensive hyperparameter-tuning is not
necessary to obtain state-of-the-art performance. The hyperparameters are
restricted in a certain range, i.e. 𝑙𝑟 = {2 × 10−2, 3 × 10−2 }, _𝑑 = 5 × 10−1,
_𝑟 = {10−3, 10−1, 1}, _𝑓 = {10−4, 10−2 }.

5.5 Performance Analysis
The accuracy of different methods on cross-domain node classification
tasks is listed in Table 3. It can be easily observed that our method ASN
outperforms all baselines in six tasks. From the results, we have the following
observations:

(1) Single Network Embedding VS. Cross-network Node Classifi-
cation. DeepWalk obtains the worst performance among all the baselines
since it only utilizes the network structure information. LANE and ANRL
perform better as they fully consider the network structure, node features
and labels. However, ASN still outperforms them by a large margin. This is
because single network embedding only utilizes source network but does
not consider the distribution discrepancy across networks, which shows
the necessity of reducing the domain discrepancy in cross-network node
classification.

(2) Traditional GCN-based Methods VS. GCN-based Methods with
Domain Adaptation. As we can see, GCN-based methods (GCN, GAT and
GraphSAGE) have better performances than single network embedding,
which shows the powerful advantages of graph convolutional neural net-
works in node embedding. However, ASN still performs much better than
them, this is because we make full use of domain adaptation to better guide
the target network to perform node classification tasks. Obviously, domain
adaptation is critical for cross-network node classification tasks.

(3) Traditional Domain Adaptation VS. Cross-network Adaptation.
MMD and DANN perform better than single network embedding which
indicates that considering the domain discrepancy across networks is crucial.
However, they still perform worse than cross-network methods. It suggests
that traditional domain adaptation methods cannot handle cross-network
node classification tasks due to their inability to leverage network structure
information. Thus, considering complicated network structure relationships
between nodes is essential for node classification in cross-network scenarios.

(4) Adversarial Domain Adaptation for Cross-Network Node Clas-
sification.Compared with the source-only method, UDAGCN and AdaGCN
perform better in most cases as they adopt a powerful adversarial domain

Components D→ A C→D

Local GCN 0.4957 0.5383
Global GCN 0.4250 0.4442
Local + global (without attention) 0.6430 0.7314
Local + global (with attention) 0.7032 0.7797

Table 4: Ablation study for components

adaptation approach to conduct cross-network node classification. The
outperformance of ASN over the source-only method also verifies this.

(5) Private and Shared Encoding for Cross-Network Node Classifi-
cation. Compared with state-of-the-art methods (UDAGCN and AdaGCN)
in cross-network scenarios, our model ASN can reach the best performance
and beat all baselines on six cross-network tasks. It indicates that our pro-
posed ASN can better capture the underlying representations of the domain-
private and domain-shared features. Thus by explicitly separating node
representations private to each domain and shared between both domains is
of great importance to learn the domain-invariant and label discriminative
node representations, which is beneficial for node classification.

5.6 Ablation Study
To investigate the contributions of different components and losses in our
proposed model, we conducted ablation studies on two representative tasks.

Ablation Study for Components As shown in Table 4, we conducted
an ablation study to investigate the contributions of different components.
The worse performances on the models with only local GCN and only global
GCN confirm the superiority of dual GCN structure, which combines the
local and global consistency information to learn a comprehensive node
representation. Besides, the attention layer used to balance the importance
between local and global consistency is also necessary for the node repre-
sentation learning, thus helping the node classification task on the target
network.

Ablation Study for Losses Using all components (including local GCN,
global GCN and the attention layer), we conduct ablation study on losses.
As shown in Table 5, every single loss has its indispensable contribution.
L𝑐𝑙𝑠+L𝑒𝑛𝑡 performs better than L𝑐𝑙𝑠 (source-only) which reflects utiliz-
ing target data by minimizing entropy loss is useful. The improvement of
L𝑐𝑙𝑠+L𝑒𝑛𝑡+L𝑎𝑑𝑣 shows that reducing domain discrepancy by adversarial

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2624

Loss D →A C → D

L𝑐𝑙𝑠 (source-only) 0.6172 0.7018
L𝑐𝑙𝑠+L𝑒𝑛𝑡 0.6242 0.7160
L𝑐𝑙𝑠+L𝑒𝑛𝑡+L𝑎𝑑𝑣 0.6675 0.7235
L𝑐𝑙𝑠+L𝑒𝑛𝑡+L𝑎𝑑𝑣+L𝑑𝑖𝑓 𝑓 0.6841 0.7412
L𝑐𝑙𝑠+L𝑒𝑛𝑡+L𝑎𝑑𝑣+L𝑟𝑒𝑐𝑜𝑛 0.6839 0.7425
Ours (all) 0.7032 0.7797

Table 5: Ablation study for losses

domain adaptation is important for node classification in the target network.
By integrating difference loss L𝑑𝑖𝑓 𝑓 into the base model can obtain much
better performance. Thus the soft subspace orthogonality constraint be-
tween private and shared encoder is beneficial. The improvement by using
reconstruction loss L𝑟𝑒𝑐𝑜𝑛 proves that reconstruction between encoder and
decoder is effective. Finally, a combination of all losses can achieve the best
results.

5.7 Visualization
To show feature transferability, as shown in Figure 3, we employ t-SNE
toolkit [21] to visualize node representations in a 2-D space.

For clear presentation, as previous method [6], we only visualize nodes
from two classes in the task of DBLPv7→Citationv1. As shown in Figure 3,
the dark 𝑟𝑒𝑑 and 𝑏𝑙𝑢𝑒 points represent nodes of “Databases” and “Artificial
Intelligence” respectively from the source network, while the light 𝑟𝑒𝑑 and
𝑏𝑙𝑢𝑒 points are from the target network. In Figure 4, the dark 𝑔𝑟𝑒𝑒𝑛 and
𝑝𝑢𝑟𝑝𝑙𝑒 points represent nodes of “Computer vision” and “Data mining”
from the source network, while the light points are from the target network.

(a) Learned by source-only (b) Learned by ASN (ours)

Figure 3: Visualization of node representations learned by
source-only model and ASN from DBLPv7→Citationv1 in
class “Databases” and “Artificial Intelligence”.

(a) Learned by source-only (b) Learned by ASN (ours)

Figure 4: Visualization of node representations learned by
source-only model and ASN from DBLPv7→Citationv1 in
class “Computer vision” and “Data mining".

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500 600

A
cc
ur
ac
y

Iterations

GCN
UDAGCN
ASN

Figure 5: Convergence of different methods

Baselines GCN UDAGCN ASN

Parameters 1743014 1739078 5229064
Runing time (ms / iteration) 72.8 100.2 169.8

Table 6: Comparisons on computational complexity

Specifically, it can be observed that the source-onlymodel can not address
the distribution shift across different networks. As shown in Figure 3(a),
nodes from different domains and categories, e.g. red and blue points, are
mixed together. And in Figure 4(a), nodes from different domains, e.g. dark
green and light green points, are far from each other.

In contrast, from Figure 3(b) and Figure 4(b) which show the node rep-
resentations learned by our model ASN, we can observe that nodes from
the same category in different domains are clustered together. For instance,
in Figure 3(b), dark red points cluster with light red points, and dark blue
points cluster with light blue points. Since nodes from the same categories
from different networks are well clustered together, it indicates that adver-
sarial domain adaptation can effectively reduce the distribution divergence
across networks. Moreover, the boundary between the two clusters are
clear, which reflects that the learned node representations are discrimina-
tive. Thus, the node representations learned by ASN are label-discriminative
and network-invariant as we expected.

5.8 Convergence verification
We conduct an experiment to test the parameter numbers and running time
as shown in Table 6. The results show that although the parameter numbers
of ASN are three times than others, it takes less than twice for the running
time. And we also provide the converge curves of task A→ C in Figure 5.
As we can see, the convergence speed and accuracy of ASN are superior
to others and ASN only takes 101 iterations to reach convergence, while
UDAGCN takes 400 iterations.

6 CONCLUSION
In this paper, we study the problem of cross-network node classification
by adversarial domain adaptation. To address the incapability of existing
traditional domain adaptation algorithms applied to network structure data,
we propose a novel model named Adversarial Separation Network (ASN) to
learn effective node representations for cross-network node classification.
Our proposed model contains a shared encoder between the source and
target networks and two private encoders and decoders which are unique
to each network. We explicitly separate the domain-shared features from
the domain-private features to learn more efficient node representations.
Also, to better exploit both local and global information of the networks,
we adopt a dual GCN framework (including a local GCN and a global GCN)
with an attention layer to learn more comprehensive node representations.
Extensive experiments on three real-world datasets show that compared
with existing algorithms, our proposed method ASN achieves state-of-the-
art performance among all cross-network node classification tasks.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2625

7 ACKNOWLEDGMENTS
This paper is supported by the National Key Research and Development
Program of China (Grant No. 2018YFB1403400), the National Natural Sci-
ence Foundation of China (Grant No. 61876080), the Key Research and
Development Program of Jiangsu(Grant No. BE2019105), the Collaborative
Innovation Center of Novel Software Technology and Industrialization at
Nanjing University.

REFERENCES
[1] Smriti Bhagat, Graham Cormode, and S Muthukrishnan. 2011. Node classification

in social networks. In Social network data analytics. Springer, 115–148.
[2] Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan,

and Dumitru Erhan. 2016. Domain Separation Networks. Advances in Neural
Information Processing Systems (2016), 343–351.

[3] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep neural networks for
learning graph representations. AAAI Conference on Artificial Intelligence 16
(2016), 1145–1152.

[4] Francine Chen and Yan-Ying Chen. 2019. Adversarial Domain Adaptation Using
Artificial Titles for Abstractive Title Generation. In 57th Annual Meeting of the
Association for Computational Linguistics. 2197–2203.

[5] William Cukierski, Benjamin Hamner, and Bo Yang. 2011. Graph-based features
for supervised link prediction. In The 2011 International Joint Conference on
Neural Networks. IEEE, 1237–1244.

[6] Quanyu Dai, X. Shen, X. Wu, and D. Wang. 2019. Network Transfer Learning via
Adversarial Domain Adaptation with Graph Convolution. ArXiv abs/1909.01541
(2019).

[7] Chris HQ Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and Horst D Simon.
2001. A min-max cut algorithm for graph partitioning and data clustering. In
Proceedings 2001 IEEE international conference on data mining. IEEE, 107–114.

[8] Meng Fang, Jie Yin, and Xingquan Zhu. 2013. Transfer learning across net-
works for collective classification. In IEEE 13th International Conference on
Data Mining. IEEE, 161–170.

[9] Yaroslav Ganin and Victor Lempitsky. 2015. Unsupervised domain adaptation
by backpropagation. In International conference on machine learning. PMLR,
1180–1189.

[10] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, Franois Laviolette, Mario Marchand, and Victor Lempitsky. 2017.
Domain-Adversarial Training of Neural Networks. Journal of Machine Learning
Research 17, 1 (2017), 2096–2030.

[11] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Networks. Advances in Neural Information Processing Systems 3
(2014), 2672–2680.

[12] Yves Grandvalet and Yoshua Bengio. 2004. Semi-supervised learning by entropy
minimization. Advances in neural information processing systems 17 (2004),
529–536.

[13] A. Gretton, K. M. Borgwardt, MJ Rasch, B. Schlkopf, and A.J. Smola. 2007. A
Kernel Method for the Two-Sample-Problem. Advances in Neural Information
Processing Systems 1 (2007).

[14] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. arXiv preprint arXiv:1706.02216 (2017).

[15] Fenyu Hu, Yanqiao Zhu, ShuWu, LiangWang, and Tieniu Tan. 2019. Hierarchical
graph convolutional networks for semi-supervised node classification. arXiv
preprint arXiv:1902.06667 (2019).

[16] X Huang, J Li, and X Hu. 2017. Label informed attributed network embedding.
10th ACM International Conference on Web Search and Data Mining (2017),
731–739.

[17] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. International Conference on Learning Representations (ICLR) (2015).

[18] Thomas Kipf and M. Welling. 2017. Semi-Supervised Classification with Graph
Convolutional Networks. International Conference on Learning Representations
(ICLR) (2017).

[19] Thomas N. Kipf andMaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. International Conference on Learning Representations
(ICLR) (2017).

[20] A. Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classifica-
tion with deep convolutional neural networks. Commun. ACM 60 (2012), 84 –
90.

[21] Van Der Maaten Laurens and Geoffrey Hinton. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9, 2605 (2008), 2579–2605.

[22] Geng Li, Murat Semerci, Bülent Yener, and Mohammed J Zaki. 2012. Effective
graph classification based on topological and label attributes. Statistical Analysis

and Data Mining: The ASA Data Science Journal 5, 4 (2012), 265–283.
[23] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for

social networks. Journal of the American society for information science and
technology 58, 7 (2007), 1019–1031.

[24] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. 2015. Learning
transferable features with deep adaptation networks. In International conference
on machine learning. PMLR, 97–105.

[25] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. 2018.
Conditional adversarial domain adaptation. In Advances in neural information
processing systems. 1640–1650.

[26] Mingsheng Long, Han Zhu, J. Wang, and Michael I. Jordan. 2017. Deep Transfer
Learning with Joint Adaptation Networks. In ICML.

[27] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE
Transactions on Knowledge and Data Engineering (2010).

[28] Adam Paszke, S. Gross, Francisco Massa, A. Lerer, and etl. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances in
Neural Information Processing Systems.

[29] Zhongyi Pei, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. 2018. Multi-
adversarial domain adaptation. In AAAI Conference on Artificial Intelligence,
Vol. 32.

[30] B Perozzi, R Al-Rfou, and S Skiena. 2014. DeepWalk: Online learning of social rep-
resentations. ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (2014), 701–710.

[31] Ariadna Quattoni, Michael Collins, and Trevor Darrell. 2008. Transfer learning
for image classification with sparse prototype representations. In 2008 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 1–8.

[32] E. Sanchez, M. Serrurier, and M. Ortner. 2020. Learning Disentangled Represen-
tations via Mutual Information Estimation. In ECCV.

[33] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. 2018. Wasserstein distance
guided representation learning for domain adaptation. In AAAI Conference on
Artificial Intelligence, Vol. 32.

[34] Xiao Shen, Quanyu Dai, Fu Lai Chung, Wei Lu, and Kup Sze Choi. 2020. Adver-
sarial Deep Network Embedding for Cross-network Node Classification. AAAI
Conference on Artificial Intelligence (2020).

[35] Xiao Shen, Quanyu Dai, Sitong Mao, Fu-Lai Chung, and Kup-Sze Choi. 2021.
Network Together: Node Classification via Cross-Network Deep Network Em-
bedding. IEEE Transactions on Neural Networks and Learning Systems 32, 5
(2021), 1935–1948.

[36] Baochen Sun and Kate Saenko. 2016. Deep CORAL: Correlation Alignment for
Deep Domain Adaptation. In ECCV Workshops.

[37] Jie Tang, J Zhang, L Yao, J Li, L Zhang, and Z Su. 2008. Arnetminer: extraction
and mining of academic social networks. 14th ACM SIGKDD international
conference on Knowledge discovery and data mining (2008).

[38] E Tzeng, J Hoffman, K Saenko, and E Darrell. 2017. Adversarial Discrimina-
tive Domain Adaptation. IEEE Conference on Computer Vision and Pattern
Recognition (2017), 7167–7176.

[39] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[40] Dong Wang and Thomas Fang Zheng. 2015. Transfer learning for speech and lan-
guage processing. In Asia-Pacific Signal and Information Processing Association
Annual Summit and Conference (APSIPA). IEEE, 1225–1237.

[41] GuangtaoWang, Rex Ying, Jing Huang, and Jure Leskovec. 2020. Direct Multi-hop
Attention based Graph Neural Network. arXiv preprint arXiv:2009.14332 (2020).

[42] JindongWang,Wenjie Feng, Yiqiang Chen, Han Yu, Meiyu Huang, and Philip S Yu.
2018. Visual domain adaptation with manifold embedded distribution alignment.
In 26th ACM international conference on Multimedia. 402–410.

[43] Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. 2020.
Unsupervised Domain Adaptive Graph Convolutional Networks. In The Web
Conference 2020. 1457–1467.

[44] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. 2016. Revisiting
Semi-Supervised Learning with Graph Embeddings.. In International conference
on machine learning. 40–48.

[45] W. Zellinger, Thomas Grubinger, E. Lughofer, T. Natschläger, and Susanne
Saminger-Platz. 2017. Central Moment Discrepancy (CMD) for Domain-Invariant
Representation Learning. International Conference on Learning Representations
(ICLR) (2017).

[46] Z Zhang, H Yang, and J Bu. 2018. ANRL: Attributed Network Representation
Learning via Deep Neural Networks. International Joint Conference on Artificial
Intelligence 18 (2018), 3155–3161.

[47] Chenyi Zhuang and Qiang Ma. 2018. Dual graph convolutional networks for
graph-based semi-supervised classification. In The World Wide Web Conference.
499–508.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2626

	Abstract
	1 Introduction
	2 Related Work
	2.1 Single Network Node Classification
	2.2 Domain Adaptation
	2.3 Cross-network Node Classification

	3 Problem Definition
	4 Methodology
	4.1 Overview of Model Framework
	4.2 Private and Shared Node Representation
	4.3 Local and Global Node Representation
	4.4 Cross-Network Node Classification
	4.5 Adversarial Domain Adaptation
	4.6 Overall Objectives
	4.7 Algorithm Description

	5 Experiments
	5.1 Datasets
	5.2 Compared Methods
	5.3 Experimental Settings
	5.4 Hyperparameters Setting
	5.5 Performance Analysis
	5.6 Ablation Study
	5.7 Visualization
	5.8 Convergence verification

	6 Conclusion
	7 ACKNOWLEDGMENTS
	References

